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Abstract
Anomaly detection in vector data is a com-
mon machine learning problem, which can
be approached as normal class probability
distribution estimation. It is also possi-
ble to use this attitude when detecting
group data, which is the subject of this
master thesis. In this thesis, we use a solu-
tion where we divide the problem into two
parts, i. e., to learn the likelihood model
of vectors and the cardinality model of
the set. The learned probability distribu-
tions are then used to evaluate each newly
observed data set. We experimentally ver-
ified the results of this approach.

Keywords: group data, anomaly
detection, gaussian mixtures, variational
autoencoder

Supervisor: Doc. Ing. Václav Šmídl,
Ph.D.

Abstrakt
Detekce anomálií ve vektorových datech
je běžný problém strojového učení, ke kte-
rému lze přistupovat jako k úloze odhadu
pravděpodobnostního rozložení dat pova-
žovaných za normální třídu. Tento přístup
je možné použít i v případě detekce ano-
málií v množinových datech, jejíž studium
je předmětem diplomové práce. V práci
používáme řešení, kdy úlohu rozdělíme
na dva dílčí části, tedy na naučení se vě-
rohodnostního modelu vektorů a modelu
kardinality množiny. Naučená pravděpo-
dobnostní rozdělení potom slouží k ohod-
nocění každé nově pozorované množiny
dat. Výsledky tohoto přístupu jsme expe-
rimentálně ověřili.

Klíčová slova: detekce anomálií,
množinová data, Gaussovské směsi,
variační autoenkodér

Překlad názvu: Metody detekce
anomálií v množinových datech
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Introduction

In this diploma thesis, we are studying anomaly detection as a problem of
normal class probability density estimation. First, we introduce methods
for anomaly detection in vector data. Particularly we focus on probability
density estimation using a Gaussian mixture model (GMM) and variational
autoencoder (VAE). With these estimators, we progress from vector data to
group data, so that cardinality of instances is no longer uniform but may
differ. To rank data instances unbiasedly towards cardinality, we need to
extend earlier established probability density estimators that are used for
feature density estimation with new cardinality distribution models. We
focus on Poisson, log-normal and discrete uniform distributions. Feature and
cardinality distributions are building blocks of the ranking function for group
anomaly detection. Eventually, we evaluate our group anomaly detection
models in Monte Carlo experiment and compare the results of our novel
approach with the performance achieved by alternative anomaly detection
method.
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Chapter 1
Preliminary to problem formulation

Anomaly detection is a classic problem in machine learning (ML), in which we
identify patterns in data that do not conform to behaviour that is regarded as
normal or expected [13]. Most anomaly detection techniques were developed
to solve a specific problem formulation for a particular application domain.
For instance, anomaly detection techniques can spot an emerging defect in
an aircraft engine [3, 15], detect a hacker sneaking into an enterprise network
[17], identify a fraudulent transaction in a banking system [23], or even reveal
a presence of a malignant tumour in an MRI scan [11].

In this chapter, we intend to familiarize the reader with the world of
anomalies and develop an intuition about the characteristics of group anomaly
detection. First, in Section 1.1, we describe the factors that differentiate
anomaly detection problem formulations from each other. In Section 1.2, we
define anomaly detection in vector data and follow up with anomaly detection
in group data. Related works are summarized in Section 1.3, and eventually,
we specify the objective of this thesis in Section 1.4.

1.1 Aspects of anomaly detection

In order to choose the most suitable ML algorithm capturing meaningful
patterns for our anomaly detection problem, we should understand the nature
of input data and the type of anomalies.

1.1.1 Nature of input data

Input data is generally a collection of data records. Further in the text,
we also refer to data records as observations. Depending on the particular
dataset, data records may be in the form of vectors or groups of constituent
vectors. Input data are then called vector data or group data1, respectively.

A vector data record is described by one or multiple attributes and is
referred to as univariate or multivariate, respectively. An attribute is either
qualitative or quantitative. The latter is further divided into discrete and

1Chapter 3 is based on point process theory, in which group data are commonly called
point pattern data, and data records point patterns. We will use these terms interchangeably.
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 Input data 

        Vector data        Group data  

    Order ID Date Customer … Sales Profit  Flock ID Point pattern 

CA-2016-118 23/06/2016 Tamara Chand … 17,499.95 €  8,399.97 €   1  

CA-2016-158 30/09/2016 Sanjit Engle …   8,749.95 €  2,799.98 €     

US-2016-127 16/07/2016 Mike Pelletier …         87.16 €          8.71 €   2  

CA-2016-137 10/01/2016 Pauline Johnson …         89.95 €        43.18 €     

       3  

         

       4  

 

Figure 1.1: Sales records as an example of vector data (left), and migrating
geese formations illustrating group data (right). Sales records are multivariate.
“Order ID”, “Date”, and “Customer” are qualitative attributes, whereas “Sales”
and “Profit” are continuous quantitative attributes. Geese formations are here
well-defined by the size of the flock and the position of every goose.

continuous. Attributes of a multivariate record are either all of the same type
or a mixture of different types.

Group data instances consist of several constituent vectors 2. Although
the cardinalities of these instances may differ, all constituent vectors have
the exact attributes. Possible types of attributes in group data are similar to
those listed when discussing vector data.

Examples of both vector and group data are shown in Fig. 1.1.

1.1.2 Types of anomalies

Anomalies can be broadly divided into three mutually exclusive categories:
atomic univariate, atomic multivariate and aggregate anomalies [10] (atomic
anomalies, in general, are in some works referred to as point anomalies [5]).
Examples of all three categories are shown in Fig. 1.2, and we describe them
in detail in the following paragraphs.

Atomic univariate anomalies are single data records with a deviant value
for one or possibly multiple attributes. They are irrelevant of relationships
between attributes or observations. These abnormal individual values of
attributes are easy to detect even with a human eye. There may be several
occurrences of atomic univariate anomalies in input data, yet every such
observation must be an anomaly in its own right. Additionally, if a single
data record holds multiple unusual attribute values, it is an anomaly with
respect to each corresponding attribute (see Fig. 1.2).

Atomic multivariate anomalies are single data records whose values of
attributes are not deviant individually. Still, they are anomalous either due
to abnormal combinations of attribute values in particular observations (see
Fig. 1.2) or differences in observations that are linked together, e.g. unusually
low summer temperature in time series measurement that would have been

2In point process theory, constituent vectors are called features. We will use both terms
interchangeably.
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............................. 1.1. Aspects of anomaly detection

Date Time Weekday Category Amount  

17/06/2016 17:56 Fri Beer, Wine, and Liquor               5.99 €  

18/06/2016 09:50 Sat Supermarkets, Grocery             90.09 €  

20/06/2016 08:02 Mon Beer, Wine, and Liquor               9.89 €  

21/06/2016 11:40 Tue Eating Places, Restaurants               7.99 €  

22/06/2016 11:42 Wed Eating Places, Restaurants               5.49 €  

23/06/2016 11:40 Thu Eating Places, Restaurants               5.99 €  

23/06/2016 17:24 Thu Supermarkets, Grocery             19.86 €  

24/06/2016 11:42 Fri Eating Places, Restaurants               5.49 €  

24/06/2016 17:56 Fri Beer, Wine, and Liquor               9.89 €  

25/06/2016 09:50 Sat Supermarkets, Grocery             87.22 €  

25/06/2016 23:19  Sat Boat Rentals and Leases        2,100.00 €   

26/06/2016 16:18 Sun Sporting Goods             19.98 €  

27/06/2016 19:32 Mon Sporting Goods               9.99 €  

28/06/2016 11:35 Tue Eating Places, Restaurants               5.49 €  

29/06/2016 11:42 Wed Eating Places, Restaurants               6.49 €  

29/06/2016 20:36 Wed Sporting Goods             14.98 €  

30/06/2016 11:39 Thu Eating Places, Restaurants               5.49 €  

30/06/2016 21:08 Thu Supermarkets, Grocery             19.86 €  

01/07/2016 11:28 Fri Eating Places, Restaurants               7.99 €  

01/07/2016 19:40 Fri Sporting Goods               9.99 €  

01/07/2016 21:40 Fri Beer, Wine, and Liquor               5.99 €  

02/07/2016 09:24 Sat Supermarkets, Grocery             98.92 €  

 

aggregate anomaly 

atomic univariate anomaly 

atomic multivariate anomaly 

Figure 1.2: Records of debit card expenses before leaving for vacation. Grey
records represent repetitive normal patterns that repeat throughout the year,
whereas white ones are anomalies. The record highlighted in red is an atomic
univariate anomaly because the attribute “Amount” value is unusually high. Also,
this expense was paid at an unusual time, so this observation is an anomaly with
respect to each attribute “Amount”, “Time”, and also “Category” individually.
The record highlighted in red represents an atomic multivariate anomaly because
records with the attribute value “Beer, Wine, and Liquor” usually occur on
Friday afternoons and not on Monday mornings. Notice that atomic multivariate
anomaly is more challenging to spot. Although individual expenses for sports
equipment appear to be normal, it is an example of an aggregate anomaly when
observed collectively.

normal in winter. These anomalies are more difficult to spot and detect as
they are hidden in the multi-dimensionality of the dataset.

Fundamental characteristics of aggregate anomalies are relationships be-
tween observations and between attributes. Aggregate anomalies are collec-
tions of various cardinalities that deviate as a whole, while constituent vectors
separately are usually not anomalous (see Fig. 1.2). Due to their complicated
and complex nature, aggregate anomalies are the most difficult to discover.

The specific subtype of aggregate anomalies relevant to group anomaly de-
tection is called distribution based aggregate anomalies [10]. These anomalies
occur in datasets consisting of clusters, with the anomalous cluster exhibiting
anomalous behaviour with respect to normal cluster distribution. For in-
stance, in Fig. 1.2, we could divide expense records from the whole year into
52 clusters, each containing records from a single week (notice that clusters
vary in cardinality since the number of expense records differs from week
to week). Thus, in group anomaly detection, we solve a specific variant of
distribution based aggregate anomalies, where we anticipate the input data
to be divided into individual clusters, i.e. group data instances.

5



1. Preliminary to problem formulation ...........................
1.1.3 Semi-supervised and unsupervised techniques

Similarly to other ML problems, anomaly detection usually consists of a
training phase, a validation phase for tuning hyperparameters and a testing
phase. Based on the availability of labelled observations in training data,
there are two ML approaches that anomaly detection techniques can take:
semi-supervised and unsupervised [5].

Semi-supervised anomaly detection techniques require only normal data
records to be labelled. Thence ML algorithm learns the model corresponding
to normal behaviour and uses this model to identify anomalies in new ob-
servations. In this thesis, we consider solely semi-supervised techniques, so
further on, when discussing ML algorithms or ML models, we always assume
they were learned in a semi-supervised manner.

Unsupervised anomaly detection techniques do not require any labelled
data records. These techniques usually make an implicit assumption that
normal observations are far more frequent than anomalies in input data.

1.1.4 Outputs

According to the particular ML algorithm that is used, the output can be in
the form of an anomaly score or probability.

ML algorithms that output an anomaly score assign every data record
numerical value that describes to which extent it is considered an anomaly.

Probabilistic ML algorithms approximately learn the probability distri-
bution of input data and consequently evaluate observations with respect
to their probabilities. In this thesis, we study anomaly detection as a prob-
lem of normal class probability density estimation. Thus, outputs of our
ML algorithms have the form of probabilities (or ranking function based on
probabilities in the case of group anomaly detection).

1.2 Anomaly detection in vector data, transition
to group data

The simplest setting for anomaly detection is the case with vector input
data and atomic univariate anomalies. First, we train the probabilistic ML
algorithm to estimate input data probability distribution so that it maximises
the probability of training data. Output probabilities of previously unseen
observations are then compared to a predefined threshold and labelled as
normal or anomalous.

Things become tricky when detecting group anomalies in group data, which
we refer to in this thesis as group anomaly detection. Remember that group
data instances vary in their cardinality, so we should not just multiply the
probabilities of individual vectors. Otherwise, output probability is biased
towards cardinality because as the number of vectors in the group data
instance grows, the corresponding joint probability value decreases rapidly to

6



.................................... 1.3. Related works

zero. Authors of [22] propose a novel ranking function that considers both
feature probability density and cardinality distribution.

1.3 Related works

In this section we provide an overview of approaches to group anomaly
detection.

In [14] an anomaly detection technique based one-class support measure
machines (OCSMMs) is proposed. OCSMMs generalize one-class support vec-
tor machines (OCSVMs) to a space of probability measures. Deep generative
models such as adversarial autoencoder (AAE) and variational autoencoder
(VAE) are used in [4] and performance of multi-level variation autoencoder
(ML-VAE) is further evaluated in [2]. Authors of [8] introduce a technique
relying on graph autoencoders.

1.4 Objective

The main objective of this thesis is to evaluate a novel ranking function for
group anomaly detection introduced in [22]. We start with anomaly detection
in vector data, getting familiar with probability density estimators such as
Gaussian mixture model and variational autoencoder. Following up with
group anomaly detection, we employ the ranking function which is build
up from feature and cardinality distributions. We use probability density
estimators introduced for vector data to learn the feature density. We choose
to approximate cardinality using Poisson, log-normal and discrete uniform
distributions. Eventually, in the experimental part, we will compare the
results of our approach with a performance achieved by the standard anomaly
detection method.

7
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Chapter 2
Anomaly detection in vector data

In the previous chapter, we have informally described anomaly detection
in vector data. Let us start this chapter with setting uniform notation in
Section 2.1 and follow with proper problem formulation in Section 2.2. In
Section 2.3 and Section 2.4, we present three approaches to learning vector
data probability model.

2.1 Notation

In vector data, we consider vectors x = (x1, . . . , xD)T from a D-dimensional
vector space X ⊂ RD, i. e. x ∈X . We are further interested in putting more
D-dimensional vectors x in a matrix, represented by X. Dataset of N records
consisting of vectors xn, n = 1, . . . , N , is denoted as D = {x1, . . . ,xN}.

The probability of the vector x falling into the interval (x,x + δx) is given
by p (x) δx for δx→ 0, and p (x) is the probability density over x.

2.2 Problem formulation

Consider the same setting as in Section 1.2: detection of atomic univariate
anomalies in the dataset D. After the training and validation phases, the
ML algorithm has learned a model corresponding to normal behaviour in the
form of probability density function p (x)1, so that every observation can be
evaluated with its likelihood2. The final decision on whether an observation
from the testing dataset is normal or anomalous reads as

χ [p (x) ≥ τ ] =
{
normal p (x) ≥ τ
anomaly otherwise

, (2.1)

where χ denotes an indicator function labelling observations as either normal
or anomaly, p (x) is the likelihood of an observation x, and τ is a delimiting

1For compactness, the condition on the normal class is omitted, i.e. p (x) is used instead
of p (x|θ), where θ are the parameters of the normal class probability density function.

2We will use the term likelihood not only for a realization of a likelihood function L (θ|x),
a function of θ given an observation x, but also for p (x|θ), a probability density of an
observation x when the true values of the model parameters are θ.

9



2. Anomaly detection in vector data ............................

−4 −3 −2 −1 0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

Figure 2.1: Plot of the probability density function p (x) as a standard nor-
mal distribution N (0, 1). The black semi-circles denote observed real numbers
x1, . . . , x8 with corresponding green/red points depicting greater/smaller likeli-
hoods with respect to the threshold τ , which is represented by the dash-dotted
line. According to (2.1), the observations with green/red likelihoods are labelled
as normal/anomaly, respectively. In our dataset, there are seven normal observa-
tions, and the only observation x5 is anomalous.

threshold, which is either predefined or learned during training. Note that in
(2.1), observations are ranked according to their likelihoods and then compared
to the threshold τ . We call functions with the ranking capability, e.g. the
likelihood and log-likelihood functions and any monotonic transformation of
the likelihood function ranking functions. These functions assign scores to
observations that are only useful for their ranking. Provided some ranking
function, we can detect anomalies even if the ML model does not output
likelihoods but scores, as shown in Chapter 3.

Example. Anomaly detection in vector data
Suppose that we have observed eight independent and identically distributed

(i.i.d) real numbers x1, . . . , x8, i. e. x ∈ R drawn from the standard normal
distribution N (0, 1), and we want to detect anomalous observations. Having
the prior knowledge about the distribution being normal, we choose to use
the threshold τ given by the three-sigma rule [18] so that observations beyond
the distance of three standard deviations from the mean are declared to be
anomalous.

Since observations x1, . . . , x8 are i.i.d., the likelihood of every observation
is computed as p (x) = N (x|0, 1). Then, we can compare the likelihoods of
observations to the threshold τ and decide on each of them whether that
observation is normal or anomalous, just like in (2.1).

The task and its solution are outlined in Fig. 2.1.

10



................................2.3. Gaussian mixture model

2.3 Gaussian mixture model

A Gaussian mixture model (GMM) is a model composed of several Gaussians.
In this section, we derive GMM similarly as in [1]. We first refresh the
properties of Gaussian distribution, then show how is the GMM built and
eventually discuss learning the GMM model.

2.3.1 Gaussian distribution

The Gaussian distribution is a continuous probability distribution in one-
dimensional space described by a univariate normal distribution

N
(
x|µ, σ2

)
= 1
σ
√

2π
e−

1
2 (x−µ

σ )2
(2.2)

with two parameters, the mean µ ∈ R and the variance σ2 > 0. x is
one-dimensional real-valued variable. From (2.2), it can be seen that the
requirements for a valid probability distribution hold, i. e. N

(
x|µ, σ2) > 0

and that Gaussian is normalized
´∞
−∞N

(
x|µ, σ2) dx = 1. The average value

of random variable X under the Gaussian distribution is given by

E [X] =
ˆ ∞
−∞

xN
(
x|µ, σ2

)
dx = µ. (2.3)

From the second order moment

E
[
X2
]

=
ˆ ∞
−∞

x2N
(
x|µ, σ2

)
dx = µ2 + σ2, (2.4)

and (2.3) it follows that the variance is given by

var [X] =E
[
X2
]
− E [X]2 = σ2. (2.5)

Generalization of the one-dimensional univariate normal distribuiton to
higher-dimensional multivariate normal distribution reads as

N (x|µ,Σ) = 1√
(2π)D |Σ|

e−
1
2 (x−µ)TΣ−1(x−µ), (2.6)

where µ ∈ RD is the mean and Σ ∈ RD×D is the covariance. x is a D-
dimensional column vector and |Σ| ≡ det Σ is the determinant of Σ.

2.3.2 Building up the Gaussian mixture model

Usually, we want to model real datasets whose records form not just sole but
more dominant clumps. Single Gaussian distribution is unable to capture such
a structure. We can make a linear superposition of more basic distributions
to approximate such data more accurately. This kind of probabilistic model
is known as mixture distribution. A Gaussian mixture can model nearly any
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2. Anomaly detection in vector data ............................
continuous probability density with a linear combination of a finite number
of Gaussian distributions as

p (x) =
K∑
k=1

πkN (x|µk,Σk) , (2.7)

where each probability density N (x|µk,Σk), a so-called mixture component,
has parameters mean µk ∈ RD and covariance Σk ∈ RD×D. The parameter
πk ∈ R is called the mixing coefficient.

If we integrate both sides of (2.7) with respect to x, note that p (x) and all
K Gaussian components are normalized, we obtain

K∑
k=1

πk = 1, (2.8)

which together with the probability distribution requirements p (x) > 0 and
N (x|µk,Σk) > 0 implies

0 6 πk 6 1. (2.9)

From (2.8) and (2.9), it follows that mixing coefficients sum to one and
are greater or equal to zero, so they satisfy the requirements to be valid
probabilities.

If we apply the sum and product rules, the marginal density of x is given
by

p (x) =
K∑
k=1

p (x, k) =
K∑
k=1

p (x|k) p (k) . (2.10)

Comparing (2.7) with (2.10), we can see that p (k) = πk and p (x|k) =
N (x|µk,Σk), where p (k) is the prior probability of picking kth component
and p (x|k) is the probability of observing x given the kth component.

The posterior probability p (k|x) is called responsibility, as it describes how
much is the kth component responsible for generating observation x. We can
express the responsibility using Bayes’ theorem as

γk (x) ≡ p (k|x)

= p (x|k) p (k)∑
l p (x|l) p (l)

= πkN (x|µk,Σk)∑
l πlN (x|µl,Σl)

. (2.11)

For the reason that will become apparent in Subsection 2.3.4, we build up
a formulation of Gaussian mixture in terms of discrete latent variable z. z
is a K-dimensional binary random variable with a 1-of-K representation in
which only a single element zk is equal to 1, and all other elements are equal
to 0, i. e. zk ∈ {0, 1} and

∑
k zk = 1. Therefore there are K possibilities (or

positions) for that single nonzero element in z = (z1, . . . , zK). Our goal is to
redefine (2.11) so that responsibility is a function of the latent variable z.

12



................................2.3. Gaussian mixture model

Figure 2.2: Graphical representation of a mixture model, according to which is
the joint probability distribution expressed in the form p (x, z) = p (z) p (x|z).

We start with expressing the joint probability distribution p (x, z) in terms
of a marginal distribution p (z) and a conditional distribution p (x|z), corre-
sponding to the mixture model in Fig. 2.2. For this reason, we will derive
their forms concerning the Gaussian mixture defined in (2.7).

We state that
p (zk = 1) = πk (2.12)

so that the prior probability of the latent variable taking the value zk is
equivalent to the mixing coefficient of the kth component. Because z uses a
1-of-K representation, the marginal distribution can be written as

p (z) =
K∏
k=1

πzkk . (2.13)

Similarly, the probability of observing x given particular latent variable zk
is equivalent to the probability of observing x given the Gaussian distribution
of the kthcomponent

p (x|zk = 1) = N (x|µk,Σk) , (2.14)

which can also be written in the form with latent variable z

p (x|z) =
K∏
k=1
N (x|µk,Σk)zk . (2.15)

If we substitute corresponding probabilities in the joint probability distri-
bution with (2.13) and (2.15) and marginalize it over z, we can derive the
marginal distribution of x as

p (x) =
∑
z
p (x, z) =

∑
z

[
K∏
k=1

πzkk

K∏
k=1
N (x|µk,Σk)zk

]

=
∑
z

[
K∏
k=1

(πkN (x|µk,Σk))zk
]

=
K∑
j=1

[
K∏
k=1

(πkN (x|µk,Σk))Ikj
]

=
K∑
j=1

πjN
(
x|µj ,Σj

)
(2.16)

13



2. Anomaly detection in vector data ............................
where Ikj = 1 if k = j an 0 otherwise, exploiting the 1-of-K representation of
z. Notice that the marginal distribution of x in (2.16) is a Gaussian mixture
of the form (2.7).

We can finally define the responsibility so that it depends on the latent
variable z

γ (zk) ≡ p (zk = 1|x) = p (zk = 1) p (x|zk = 1)∑K
j=1 p (zj = 1)N (x|zj = 1)

= πkN (x|µk,Σk)∑K
j=1 πjN

(
x|µj ,Σj

) . (2.17)

Having multiple records in our dataset D, we can compute component k’s
responsibility for explaining the observation xn, n = 1, . . . , N , individually
for every observation, denoting it as γ (znk). For this purpose, we represent
the records from D by the matrix X ≡ {x1, . . . ,xN}.

2.3.3 Setting model parameters

Usually, the model parameters µ ≡ {µ1, . . . ,µK}, Σ ≡ {Σ1, . . . ,ΣK} and
π ≡ {π1, . . . , πK}, as well as the number of components K are unknown and
our goal is to determine their optimal values given data X. Assuming that
observations X are drawn independently from the distribution and that the
optimal number of components is K, the formulation

p (X|π,µ,Σ) =
N∏
n=1

[
K∑
k=1

πkN (xn|µk,Σk)
]

(2.18)

is the Gaussian mixture likelihood function. By applying a logarithm to each
side of the equation, we get the log-likelihood

ln p (X|π,µ,Σ) =
N∑
n=1

ln
[
K∑
k=1

πkN (xn|µk,Σk)
]
. (2.19)

We want to set the values of the parameters so that it maximizes (2.19).
If we were dealing with just a single Gaussian, we would differentiate its
log-likelihood with respect to the parameters, equate it to zero, and find the
optimal values for these parameters. In the Gaussian mixture model, due to
the summation over k inside the logarithm in (2.19), the maximum likelihood
for the parameters no longer has a closed-form analytical solution. However,
we can maximize the log-likelihood using iterative numerical optimization
techniques [9] or alternatively applying the expectation-maximization (EM)
algorithm [1], which is summarized in Subsection 2.3.4.

2.3.4 Expectation-maximization algorithm for Gaussian
mixture

Given a Gaussian mixture model of K components, the goal of the EM
algorithm is to obtain maximum likelihood estimates of model parameters
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................................ 2.4. Variational autoencoder

µ, Σ and π by means of maximizing the log-likelihood function (2.19). The
algorithm is comprised of four steps: initialization, expectation or E step,
maximization or M step and evaluation...1. Initialize the Gaussian mixture parameters µ, Σ and π and evaluate the

initial value of the log-likelihood ...2. E step. Evaluate the responsibilities using the current parameter values

γ (znk) = πkN (xn|µk,Σk)∑K
j=1 πjN

(
xn|µj ,Σj

) . (2.20)..3. M step. Recompute the parameters using the current responsibilities

µnew
k = 1

Nk

N∑
n=1

γ (znk) xn, (2.21)

Σnew
k = 1

Nk

N∑
n=1

γ (znk) (xn − µnew
k ) (xn − µnew

k )T , (2.22)

πnew
k = Nk

N
, (2.23)

where

Nk =
N∑
n=1

γ (znk) . (2.24)..4. Evaluate the Gaussian mixture log-likelihood

ln p (X|π,µ,Σ) =
N∑
n=1

ln
[
K∑
k=1

πkN (xn|µk,Σk)
]

(2.25)

and check that the log-likelihood or parameters converge, i. e., that the
change in log-likelihood or the parameters falls below some threshold. If
the convergence criterion is not satisfied, return to step 2.

2.4 Variational autoencoder

A variational autoencoder (VAE) is a neural network architecture that was
introduced in [12]. This section starts with a classical autoencoder description
and follows with a variational autoencoder. Next, we derive some mathemat-
ical fundamentals used in VAE construction, and eventually, we build the
VAE that we will use for learning the probability model.

2.4.1 Motivation: from autoencoders to variational
autoencoders

Why do we start the discussion about variational encoders by talking about
classical autoencoders? Simply because they consist of the same blocks, and
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Latent  
vectorInput vector Reconstructed 

input vector

ENCODER

 

DECODER

 

Figure 2.3: An autoencoder consists of an encoder eθ (x) which maps an input
vector x into a lower-dimensional latent vector z = eθ (x) and a decoder dφ (z)
which reconstructs the input vector x′ = dφ (z).

both are related to data compression. By comparing these two architectures,
the reader should better understand how a variational autoencoder works.

An autoencoder, as well as a variational encoder, are built from two neural
networks, representing an encoder and a decoder. The encoder eθ (x) takes an
input vector x and encodes it producing a lower-dimensional representation
of x in encoded space, also called latent space. The decoder dφ (z) then
reconstructs the input vector from its latent representation so that x and x′
are as similar as possible, i. e. the reconstruction loss is minimized. Typically,
the encoder and decoder networks are trained jointly via backpropagation.
The difference between autoencoder and variational autoencoder lies in the
latent space representation.

Standard autoencoder learns to encode an input vector x into a compact
latent vector representation z from which is the input vector well reconstructed,
as shown in Fig. 2.3. The loss function is only determined by the reconstruction
loss. Such architecture is useful for dimensionality reduction so that the latent
vector representation retains the meaningful attributes of the input vector.
Notice that if we trained an autoencoder on, for instance, the MNIST dataset,
the encoding for each image type would form distinct clusters because distinct
encodings make it easier for the decoder to reconstruct corresponding input
[19].

By contrast, as shown in Fig. 2.4, variational encoders encode an input
vector x to a lower-dimensional latent distribution given by mean µ and
variance Σ. We will see the properties which control the latent distribution
shape in Subsection 2.4.4. Since variational autoencoder intrinsically works
with the distribution over the latent variable p (z), we can say, that a vari-
ational encoder aims to maximize the probability of each x in the training
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ENCODER

 

Latent  
distribution

DECODER

 

Input vector Reconstructed 
input vector

Figure 2.4: A variational autoencoder’s encoder maps an input vector x into a
lower-dimensional latent distribution described by its parameters {µ,Σ} = eθ (x).
Corresponding latent variable z is then fed into a decoder to reconstruct the
input vector x′ = dφ (z).

data according to

p (x) =
ˆ

Z

p (x, z) dz =
ˆ

Z

p (x|z) p (z) dz. (2.26)

In other words, we are looking for such latent variable z that it explains
the observation x. Only after finding such z the probability p (x) will be
maximized. Unfortunately, when the dimension of z is high, the computation
of p (x) becomes intractable.

2.4.2 Evidence lower bound

Let us consider a dataset ofN vectors D = {x1, . . . ,xN}. X denotes a random
variable, and each xn, n = 1, . . . , N , is its multi-dimensional vector realization.
We further denote latent random variable Z and its multidimensional vector
realization as z. We are looking for the latent variable z, which explains
observation x, i. e. we are interested in the posterior distribution

pθ (z|x) = pθ (x|z) p (z)
pθ (x) = pθ (x|z) pθ (z)´

Z pθ (x, z) dz , (2.27)

where θ are parameters of the distribution. As in Subsection 2.4.1, the
marginal probability pθ (x) might be intractable. However, we can use vari-
ational inference, a paradigm for estimating a posterior distribution when
computing it explicitly is intractable. Instead of computing pθ (z|x) using the
Bayes theorem, variational inference attempts to approximate the posterior
distribution pθ (z|x) with another distribution qφ (z), characterized by its
own parameters φ. qφ (z) should be easier to evaluate than the posterior
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2. Anomaly detection in vector data ............................
distribution, and by optimization of φ, we look for q (z|φ), which is similar to
pθ (z|x).

We need to refresh one last thing before diving into evidence lower bound
(ELBO) derivation, the Jensen’s inequality. It states that for any concave
function f we have

f (E [X]) ≥ E [f (X)] . (2.28)

Since we have already introduced qφ, and we are familiar with Jensen’s
inequality, we derive ELBO as follows

ln pθ (x) = ln
(ˆ
Z
pθ (x, z) dz

)
= ln

(ˆ
Z
pθ (x, z) qφ (z)

qφ (z)dz
)

= ln
(
Eq

[
pθ (x,Z)
qφ (Z)

])

≥ Eqφ

[
ln pθ (x,Z)

qφ (Z)

]
. (2.29)

The inequality in (2.29) stems from Jensen’s inequality, which we applied on
logarithm, a concave function. In the thesis, we will refer to ELBO as L, so
that

L = Eqφ

[
ln pθ (x,Z)

qφ (Z)

]
. (2.30)

The final inequality in (2.29) implicates, that instead of maximizing pθ (x),
we can maximize L.

2.4.3 Kullback–Leibler divergence

The Kullback–Leibler (KL) divergence has its origins in information theory,
whose primary goal is to quantify how much information is in data according
to

I (x) = − ln p (x) , (2.31)

where x is a realization of a random variable X. The intuition behind this
concept is that if the probability of a certain event is high, then its information
I is low. For instance, suppose that x is given by the sentence “When it
rains, paths are wet”. Corresponding probability p (x) ≈ 1 means that such
event is almost certain, and therefore its information is almost zero, I ≈ 0.

The most important metric in information theory is called entropy. For a
discrete random variable X, it is given by

H (x) = −
∑

p (x) ln p (x) . (2.32)
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................................ 2.4. Variational autoencoder

Then the KL divergence DKL [p ‖ q] is a measure of dissimilarity between
two probability distribution p and q with respect to the distribution p. There-
fore, it is given by

DKL [p (x) ‖ q (x)] = −
∑

p (x) ln q (x) +
∑

p (x) ln p (x) (2.33)

=
∑

p (x) ln p (x)
q (x) (2.34)

for a discrete random variable realization x. Similarly, we can define KL
divergence for a continuous random variable realization x as

DKL [p (x) ‖ q (x)] =
ˆ ∞
−∞

p (x) ln p (x)
q (x)dx. (2.35)

In this thesis, we will use a general notation of KL divergence with an expected
value

DKL [p (x) ‖ q (x)] = Eq
[
ln p (X)
q (X)

]
, (2.36)

where the q subscript denotes that the expected value is computed with
respect to the probability distribution q.

The KL divergence has two important properties:..1. DKL is not a symmetrical quantity, i. e. DKL [p ‖ q] 6≡ DKL [q ‖ p],..2. DKL is non-negative, i. e. DKL [p ‖ q] ≥ 0 and DKL [p ‖ q] = 0 if, and
only if, p (x) = q (x).

2.4.4 Building up the variational encoder

In Subsection 2.4.2, we asserted that we would use the distribution qφ (z) to
estimate intractable posterior distribution pθ (z|x). So, let us examine the
KL divergence between these two distributions

DKL [qφ (z) ‖ pθ (z|x)] = Eqφ
[
ln qφ (Z)
pθ (Z|x)

]
= Eqφ [ln qφ (Z)]− Eqφ [ln pθ (Z|x)]

= Eqφ [ln qφ (Z)]− Eqφ
[
ln pθ (x,Z)

pθ (x)

]
= Eqφ [ln qφ (Z)]− Eqφ [ln pθ (x,Z)] + Eqφ [ln pθ (x)]

= ln pθ (x)− Eqφ

[
ln pθ (x,Z)

qφ (Z)

]
= ln pθ (x)− L

.

(2.37)
From (2.37), we observe that the difference between ln pθ (x) and L is precisely
the KL divergence between qφ (z) and pθ (z|x). Therefore, the equality
ln pθ (x) = L holds if, and only if the KL divergence between qφ (z) and
pθ (z|x) equals zero. We can rearrange the result of (2.37) so that

ln pθ (x) = DKL [qφ (z) ‖ pθ (z|x)] + L. (2.38)
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2. Anomaly detection in vector data ............................
Now, we revisit (2.30) and rearrange its formulation to contain the KL

divergence between qφ (z) and pθ (z)

L = Eqφ

[
ln pθ (x,Z)

qφ (Z)

]

= Eqφ [ln pθ (x|Z)] + Eq

[
ln pθ (Z)
qφ (Z)

]
= Eqφ [ln pθ (x|Z)]−DKL [qφ (z) ‖ pθ (z)]

. (2.39)

Substituting the result of (2.39) into (2.38) and keeping the reformulated
ELBO on the right-hand side, we obtain

ln pθ (x)−DKL [qφ (z) ‖ pθ (z|x)] = Eqφ [ln pθ (x|Z)]−DKL [qφ (z) ‖ pθ (z)] ,
(2.40)

where qφ (z) can be any distribution. But since we are interested in inferring
pθ (x), a distribution over x, it is reasonable to construct the distribution qφ
which does depend on x, i. e. qφ (z|x),

ln pθ (x)−DKL [qφ (z|x) ‖ pθ (z|x)] = Eqφ [ln pθ (x|Z)]−DKL [qφ (z|x) ‖ pθ (z)] .
(2.41)

The equation (2.41) lays the foundation for variational autoencoders and we
will spend some time with it. Remember, that we derived the equation (2.41)
from ELBO, whose formulation (2.39) is on the righ-hand side. Therefore,
since we know that VAE aims to maximize pθ (x), which can be achieved
by maximizing ELBO, the ultimate goal it to maximize both sides of (2.41).
When x is fixed, the left-hand side is maximized by minimizing the KL
divergence. And since pθ (z|x) is intractable, this term will become small if
qφ is high-capacity. Assuming that we use arbitrarily high-capacity model,
the probability distributions qφ (z|x) and pθ (z|x) will match and the KL
divergence will become zero. The right-hand side of (2.41) can be maximized
by stochastic gradient descent. Notice, that by maximization of the right-hand
side, in the first term, we maximize ln pθ (x|z), where z is the expected value
with respect to the distribution qφ (z|x). In other words, qφ (z|x) is encoding
x into z and pθ (x|z) is decoding it to reconstruct the input x. The second
term is a regularization term, which pushes the encoding distribution qφ (z|x)
to be similar to the distribution pθ (z).

We can make the optimization of the right hand side easier if we make the
right decisions regarding forms of distributions pθ (z) and qφ (z|x). The usual
choice is to say that

qφ (z|x) = N
(
z|µφ (x) ,Σφ (x)

)
, (2.42)

pθ (z) = N (z|0, I) , (2.43)

where µφ and Σφ are arbitrary deterministic functions with parameters
φ that can be learned from training data. In practice, µφ (x) and Σφ (x)
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are implemented as neural networks with Σφ constrained to be a diagonal
matrix. The decoding distribution pθ (x|z) has arbitrary form and it is also
implemented via neural network.

The last term on the right hands side of (2.41) is due to our choice of
distribution a KL-divergence between two multivariate Gaussians, which can
be solved in a closed form as

DKL [N (µ0,Σ0) ‖ N (µ1,Σ1)]

= 1
2

(
tr
(
Σ−1

1 Σ0
)

+ (µ1 − µ0)T Σ−1
1 (µ1 − µ0)−D + ln det Σ1

det Σ0

)
, (2.44)

where D is the dimension of Gaussians [7]. In our case, the equation boils
down to

DKL
[
N
(
z|µφ (x) ,Σφ (x)

)
‖ N (z|0, I)

]
= 1

2
(
tr (Σφ (x)) + µφ (x)Tµφ (x)−D − ln det Σφ (x)

)
. (2.45)

Constraining Σφ(x) to be a diagonal matrix, we can simplify the notation so
that (Σφ)ii = σ2

i and then

DKL
[
N
(
z|µφ (x) ,Σφ (x)

)
‖ N (z|0, I)

]
=

= 1
2

(
D∑
i=1

σ2
i +

D∑
i=1

µ2
i −D − ln

D∏
i=1

σ2
i

)

= 1
2

(
D∑
i=1

σ2
i +

D∑
i=1

µ2
i −D −

D∑
i=1

2 ln σi

)

= 1
2

D∑
i=1

[
σ2
i + µ2

i − 1− 2 ln σi
]

. (2.46)

To compute the first term on the right hand side of (2.41), we could use
sampling to estimate the expected value Eqφ . However, to train the model
using back-propagation, we need to be able to differentiate the final output
with respect to each parameter in the network. This cannot be done for
random sampling. We can overcome it with the reparameterization trick [12],
which moves the random sampling to the input layer. Instead of sampling
from N

(
z|µφ (x) ,Σφ (x)

)
directly, we first sample from ε ∼ N (0, I) and

then compute z = µφ (X)+ε ·Σ1/2
φ (X), so that we eventually take a gradient

of

ED
[
EN (0,I)

[
ln pθ

(
x|z = µφ (X) + ε ·Σ1/2

φ (X)
)
−DKL [qφ (z|X) ‖ pθ (z)]

]]
(2.47)

The VAE that we have just build is depicted in Fig. 2.5.
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Latent  
distributionInput vector Reconstructed 

input vector

DECODER

 

ENCODER

 

Figure 2.5: Architecture of variational encoder.
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Chapter 3
Anomaly detection in group data

This section picks up the threads of group anomaly detection that we have
presented in Chapter 1. In Section 3.1, we extend the notation introduced
for vector data to refer to group data appropriately. The need for a different
approach to treating group data is outlined in Section 3.2. The proposed
ranking function for group anomaly detection is discussed in Section 3.3
and followed by the description of building blocks of the ranking function in
Section 3.4 and Section 3.5.

3.1 Notation

Definition of group data follows the notation from [21]. We consider point
patterns X of features x = (x1, . . . , xD)T from a feature space X ⊂ RD, i. e.
x ∈ X and X ⊂X ⊂ RD. We are further interested in matrix representation
of point patterns X ∈ RC×D, C = |X |, where C denotes the cardinality
achieved by counting features of X . A permutation of the feature axis with a
permutation π is denoted by Xπ, i. e. X 6= Xπ but X ≡ X ≡ Xπ. Dataset
consisting of G finite point patterns Xn, n = 1, . . . , N , of potentially varying
cardinalities is denoted as D = {X1, . . . ,XN}.

3.2 Motivation

First of all, consider what if the cardinality of all group data was identical.
Then the likelihood of the point pattern X ∈ RC×D with the cardinality C
would be given by the joint probability density of constituent vectors

p (X) = p (x1, . . . ,xC) =
C∏
c=1

p (xc) , (3.1)

where the joint probability density acts like a valid ranking function. Then
we could simply decide for every observation according to (2.1).

However, all point patterns in the dataset are not necessarily of the same
cardinality, which makes the usage of joint probability density as a ranking
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3. Anomaly detection in group data ............................

Figure 3.1: Probability density function of landing positions p (x) . Position
x1 = 0.7 m is two times less likely than equally likely positions x2 = −0.4 and
x3 = 0.4.

function in group data misleading. With an example inspired by [22], we illus-
trate that group data should not be ranked according to the joint probability
density of its constituent vectors.
Example. Group anomaly detection with unsuitable ranking function

Suppose, that we are given two point patterns of fallen apples from different
days X1 = {x1}, X2 = {x2, x3} and a probability density function p (x) of
variable x ∈ R learned from normal training data instances as shown in
Fig. 3.1. Assuming that apples fall independently from each other, and that
daily observations are independent from day to day, we want to decide, which
point pattern is more likely to be anomalous.

If we ranked observations X1 and X2 according to the joint probability
density, then we would obtain the following probabilities of point patterns

p (x1) = 0.3,
p (x2, x3) = p (x2) p (x3) = 0.36,

and since p (x1) < p (x2, x3), we would conclude that the point pattern X1 is
more likely to be anomalous. However, if the observations had been measured
in centimeter instead of meters, we would have come to contradictory result
since p (x1) = 0.003 > 0.000036 = p (x2, x3). This inconsistency arises from
comparing two unequally sized point patterns using an improper measure of
goodness of fit, i.e. joint probability density as the likelihood function.

3.3 Novel ranking function

To rank group data properly, we will use a novel ranking function that
considers the feature density and the cardinality distribution of the point
pattern, as suggested in [22]. Moreover, according to Proposition 1 in [22],
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which we quote below, we can determine the feature probability density from
all features cellectively irrespective of the point pattern to which a particular
feature belongs. We can also estimate the parameters of assumed cardinality
distribution given all point pattern cardinalities.
Proposition. Let X1, . . . ,XN be N i. i. d. realizations of an IID-cluster with
parameterized cardinality distribution pcξ and feature density pϕ. Then the
maximum likelihood estimate of ξ and ϕ is given by

ξ̂ = MLE (pcξ; |X1| , . . . , |XN |) , (3.2)

ϕ̂ = MLE
(
pϕ;]Nn=1Xn

)
, (3.3)

where ] denotes disjoint union.
The ranking function then reads as

r (X) ∝ pc (|X |)
∏

x∈X p (x)(
‖p‖22

)|X | , (3.4)

where
∏

x∈X p (x) is the likelihood of point pattern features, pc (|X |) denotes
the likelihood of a point pattern whose cardinality is |X |, and ‖p‖2 is the
feature probability density L2-norm. Note that we omit the parameters ξ
and ϕ in our distribution notation.

Now, similarly to (2.1) for vector data, we can label group data according
to

χ [r (X) ≥ τ ] =
{
normal r (X) ≥ τ
anomaly otherwise

. (3.5)

The finding that we can treat the features independently of point patterns
is crucial because it allows us to manipulate features exactly as we did with
vector data. Therefore, we can use the methods discussed in Chapter 2 when
learning the feature probability density. However, first, we look into models
of cardinality distribution, which we will use in our ranking function.

3.4 Models of cardinality distribution

At this point, the reader should be aware of the ranking function r (X), but
yet, we did not discuss its building blocks. This section introduces one of the
ranking function components, the cardinality distributions pc.

3.4.1 Poisson distribution

The Poisson distribution is a discrete probability distribution that expresses
the probability of a given number of event occurrences within an interval. It
is described by the probability mass function

Pois (x|λ) = e−λλx

x! , (3.6)

25



3. Anomaly detection in group data ............................
with a single parameter λ > 0, which is responsible for the shape of the
distribution, and one-dimensional variable x indicating the number of event
occurrences.

The parameter λ signifies the average number of event occurrences and is
given as

E [X] =
∞∑
x=0

xPois (x|λ) = λ. (3.7)

One drawback of the Poisson distribution is that it makes strong assumptions
regarding the distribution of the underlying data. In particular, that the
mean equals the variance

var [X] = λ. (3.8)

While these assumptions are tenable in some settings, they are less appropri-
ate for modelling point pattern cardinalities, which we will experimentally
evaluate.

In our case, we do not know the parameter λ, but we want to estimate it
from the group data D of N point patterns, which can be simply done using
maximum likelihood estimation

λ̂ = 1
N

N∑
n=1
|Xn| . (3.9)

3.4.2 Log-normal distribution

The log-normal distribution is a continuous probability distribution of a
random variable whose logarithm is normally distributed. Its probability
density function is given by

lognormal
(
x|µ, σ2

)
= 1
xσ
√

2π
e−

1
2

( ln(x)−µ
σ

)2

, (3.10)

where, similarly to the Gaussian distribution, the parameters µ ∈ R and
σ2 > 0 are the mean and variance, respectively. x is one-dimensional real-
valued variable.

Although there have been some attempts to discretize the log-normal
distribution [20], we decided to use the original log-normal distribution and
evaluate its behaviour experimentally.

To estimate the values of the parameters µ and σ2 from our group data D
of N point patterns, we use the maximum likelihood estimation

µ̂ = 1
N

N∑
n=1
|Xn| , (3.11)

σ̂2 = 1
N

N∑
n=1

(ln (|Xn|)− µ̂) . (3.12)
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3.4.3 Discrete uniform distribution

The discrete probability distribution is a symmetric probability distribution
wherein a finite number of values are equally likely to be observed. Its
probability mass function reads as

U (x|a, b) = 1
n
, (3.13)

where the parameters a and b,a ≤ b, are the limit points of the discrete
interval; and n = b− a+ 1 is the number of integer values within the limit
points. Every discrete variable x = a, . . . , b has equal probability 1

n .

3.5 Feature density models

In this section, we discuss the other building block of the ranking function
r (X), the feature density models and their normalization via L2-norm.

3.5.1 VAE and GMM

Assuming, that the point pattern data are i. i. d., we can treat all point
pattern features independently from the point patterns that they belong to.

Hence, we can estimate the probability distribution of the point pattern
features exactly the same way as with vector data.

3.5.2 L2-norm

In the denominator of (3.4), we need to compute a square of the feature
probability density L2-norm, which reads as

‖p‖22 =
ˆ
p (x) p (x) dx. (3.14)

Assuming that x ∈ RD, where D is high, the integral over x becomes
intractable, and we need to turn to a numerical integration method to
estimate the integral. With Monte Carlo estimation, we can write

p (x) ≈ 1
N

N∑
n=1

δ (xn − x) . (3.15)

Suppose we now substitute (3.15) for the feature probability density in (3.14).
In that case, we get a tractable form of the L2-norm squared

‖p‖22 =
ˆ
p (x) 1

N

N∑
n=1

δ (xn − x) dx

= 1
N

N∑
n=1

ˆ
p (x) δ (xn − x) dx

= 1
N

N∑
n=1

p (xn)

, (3.16)
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where xn can be either sample from p (x) or, in the case of i. i. d. data, the
original data vector.
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Chapter 4
Experiments

The models discussed in this thesis can not only be used for anomaly detection
in group data, but also in various scenarios when point patterns vary in their
cardinalities.

In this chapter, we first describe the dataset that will be used for testing our
models in Section 4.1, then we discuss the metric for models evaluation. In
Section 4.3, the setting of the models is discussed and eventually we evaluate
the results in Section 4.4

4.1 MIL dataset

MIL dataset is gathered dataset combining twenty smaller datasets for tasks
varying form text categorization to image classification. Individual datasets
vary in size, have different number of bags and features, etc., as can be seen
in Table 4.1. We will evaluate our models using the MIL dataset [6].

4.2 Metrics used for model quality assessment

In order to comparatively assess quality of models, we need to use appropriate
metric. The receiver operating characteristic (ROC) [16] curve is such a
performance measurement. It is used for binary classification problems at
various threshold settings. ROC curve is a probability curve that plots the
true positive rate (TPR) against false positive rate (FPR).

TPN value tells us what is the proportion of positive observations that
were correctly classified.

TPR = TP
TP + FN .

FPR value is on the other hand the proportion of negative observations
that were incorrectly classified

FPR = FP
FP + TN .

The area under the curve (AUC) [16] is the measure of the ability of a
classifier to distinguish between classes and is used as a summary of the
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dataset p. p. attr. normal anom. medi. mean

BrownCreeper 546.0 38.0 350.0 196.0 17.0 18.7
CorelAfrican 2000.0 9.0 1900.0 100.0 3.0 4.0
CorelBeach 2000.0 9.0 1900.0 100.0 3.0 4.0

Elephant 200.0 230.0 100.0 100.0 7.0 7.0
Fox 200.0 230.0 100.0 100.0 6.0 6.6

Musk1 91.0 166.0 45.0 46.0 4.0 5.1
Musk2 99.0 166.0 61.0 38.0 10.0 57.0
Mut1 185.0 7.0 61.0 124.0 56.0 55.8
Mut2 39.0 7.0 27.0 12.0 44.0 50.9
News1 100.0 200.0 50.0 50.0 58.0 54.4
News2 100.0 200.0 50.0 50.0 30.0 30.9
News3 100.0 200.0 50.0 50.0 52.0 51.8
Protein 190.0 9.0 166.0 24.0 145.5 138.4
Tiger 200.0 230.0 100.0 100.0 6.0 6.1

UCSB-BC 57.0 708.0 31.0 26.0 36.0 34.8
Web1 72.0 5863.0 52.0 20.0 24.0 29.8
Web2 74.0 6519.0 56.0 18.0 23.0 29.9
Web3 74.0 6306.0 60.0 14.0 24.0 33.0
Web4 74.0 6059.0 20.0 54.0 23.5 30.5

WinterWren 545.0 38.0 437.0 108.0 17.0 18.7

Table 4.1: MIL datasets with corresponding number of point patterns, number
of attributes per vector, number of normal and anomalous point patterns, median
and mean of point pattern cardinalities.

ROC curve. Let us consider three particular values of AUC. When AUC = 1,
then the model is perfectly able to distinguish between positive and negative
observation. Contrary, AUC = 0 implicates the model which classifies positive
observations as negative and negative observations as positive. The model
whose AUC = 0.5 achieves similar performance asif the classes were guessed
randomly.

We will use AUC to effectively evaluate model performance.

4.3 Experiments setting

In Chapter 3, we indicated the scenario under which we will undertake the
experiments. We have two models of feature probability density: VAE and
GMM; and three models of cardinality distribution: Poisson, lognormal and
discrete uniform. We will evaluate the performance for each combination
of feature probability density and cardinality distribution, which gives us
six distinct models in total. These models will be ranked according to the
logarithmic form of (3.4) which reads as

r′ (X) ∝ ln pc (|X |) +
∑
x∈X

ln p (x)− |X | ln
(
‖p‖22

)
. (4.1)
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Additionally, we also evaluate models which take into account only feature
probability distribution without its normalization. Again, we have two models
of probability density and three models of cardinality, which gives us six
distinct models in total. Then the ranking function reads as

r′′ (X) ∝ ln pc (|X |) +
∑
x∈X

ln p (x) . (4.2)

Alternatively, we check the performace of models which use a some function
on our point pattern data, particularly fun = {mean,max}

r′′′ (X) ∝ fun [ln p (x)]x∈X . (4.3)

Since we have two feature probability density models, we obtain four distinct
models.

All together, we evaluate 16 models, each on 20 datasets. Every model is
trained and evaluated 10 times per dataset and the results per dataset are
averaged.

The problem is implemented in Julia programming language and we use
GroupAD.jl package.

4.4 Results

First, let us look at the best performing models per the feature probability
estimator. Such comparison for every dataset is shown in Fig. 4.2. An evident
conclusion is that models based on VAE perform in general better than the
ones using GMM. The gap between model performance is the biggest when
tested on the datasets Web1, Web2, Web3 and Web4. These datasets are
characteristic by more than ten times higher number of attributes than other
models. Therefore, it is apparent that VAEs do a better job when estimating
high-dimensional probability distributions. Also, both models did a poor
job on Fox, Musk1 and Musk2 datasets. Fox and Musk1 are distinguishing
due to identical number of normal an anomalous observations in the dataset,
whereas Musk2 consists of relatively small amount of data with point patterns
having various cardinalities. On the other hand, VAE and GMM models
perform well on datasets BrownCreeper, CorelBeach, News1, News2, News3
and WinterWren. Corelbeach can be trainer finely since the model consist of
multiplicatively more normal point patterns than other models. We leave the
rest of mentioned good performing models to be explored by the reader.

Performance of the VAE based models are shown in Fig. 4.2. In general,
all the evaluated models have similar results. However, the models that are
evaluated according to r′ (X) from (4.1) have better results on datasets Mut1
and Mut2 and slightly better performance when evaluated on CoreAfrican,
CoreBeach, and Elephant. The dataset Mut1 is significant by high number of
anomaly point patterns and Mut2 stands out because it varies in the number
of cardinalities. We turn back to the dataset Mut1 once again, note, that
alternative scoring functions r′′′ (X) from (4.3) that take into account mean or
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even maximum of likelihoods performs well on this dataset. The Winterwren
dataset is the most promiment example where ranking according to (4.1)
gives significantly worse results than all other scoring functions. This dataset
is characteristic only by the fact that the number of normal point patterns is
four times higher than number of anomalies.

Last remark regarding VAE based models. In Section 3.4, we pointed out,
that the Poisson distribution might not be suitable cardinality distribution
function since its mean equals the variance. Note, that according to our
experiments, all the cardinality distributions perform similarly.

Similarly, the best test AUC curves for GMM based models per dataset are
shown in Fig. 4.3. Again, the models which evaluates according to r′ (X) from
(4.1) achieves significantly better result on Elephant dataset. On the other
hand, in GMM based models it is more frequent, that normalization pulls
the score down and better performance is achieved by models with feature
density and cardinality distribution that are not normalized. Such models
follow the scoring r′′ (X) from (4.2).

Note, that for Winterwren dataset, GMM based models can achieved
similarly good results as VAE based models only when using alternative
scoring according to r′′′ (X) from (4.3).
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Figure 4.1: The best test AUC curve per dataset w. r. t. to the feature density
estimator.
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Figure 4.2: Test AUC curve for VAE using various scoring functions, per dataset.
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Figure 4.3: Test AUC curve for GMM using various scoring functions, per
dataset.
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Chapter 5
Conclusion

In this thesis, we studied anomaly detection as a problem of normal class
probability density estimation. We introduced the framework which is used
for anomaly detection on vector data and extended it so, that it could be
used also for anomaly detection on group data.

Eventually, we experimentally evaluated the ranking function for group
anomaly detection that we introduced in the theoretical part and compared
its performance with alternative scoring functions. The ranking function
achieves promising results which in some scenarios outperform alternative
approaches as shown in experiment. There are also scenarios when it is better
to use alternative scoring functions, however, this is beyond the scope of this
thesis and we keep it for the future work.
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